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Abstract 

A target recognition capability is described 
which performs: color detection, target type 
and pose hypothesis generation, and target ver- 
ification by 3D alignment of target models to 
range and optical imagery. The term 'coregis- 
tration' is introduced to describe target, range 
and optical sensor alignment. The following 
key verification components are described and 
demonstrated: target-model feature extraction, 
model-driven edge detection, range, optical and 
target coregistration, and coregistration space 
matching. As a precursor to future incorpora- 
tion of terrain data, the ability to match terrain 
features to imagery from the UGV Demo C test 
site is demonstrated. 

1     Introduction 

Our goal is the development of new Automatic Target 
Recognition (ATR) algorithms which are more robust 
with respect to scene clutter, target occlusion and vari- 
ations in viewing angle. The heart of our approach is to 
fuse range and optical imagery, color or IR, using global 
geometric constraints. Constraints derive from known 
sensor, target and scene geometry. This may be thought 
of as model-based sensor fusion, and contrasts with more 
traditional approaches which attempt to fuse data based 
upon low-level queues only [EG92]. 

The roots of our approach lie in past alignment based 
object recognition research [Low85, HU90, BR95] which 
has demonstrated the value of algorithms which precisely 
vary 3D object to sensor alignment as part recognition. 
While this paradigm is dominant in many domains, it 
is surprisingly absent from work on ATR. Instead, ATR 
is dominated by systems which employ fixed sets of im- 
age space templates or probe sets: each derived from a 

This work was sponsored by the Advanced Research 
Projects Agency (ARPA) under grants DAAH04-93-G-422 
and DAAH04-95-1-0447, monitored by the U. S. Army Re- 
search Office. 

kppears also in the Proceedings of the 1996 ARPA Image 
Understanding Workshop. 

slightly different viewpoint. We believe that integrating 
3D alignment into the recognition is superior to using 
large sets of image-space templates, and we are there- 
fore developing new algorithms to accomplish this in the 
context of ATR. 

Geometrically precise alignment techniques are com- 
putationally expensive. To limit its use, up-stream pro- 
cessing focuses attention so alignment is applied spar- 
ingly as a final means of resolving conflicting hypothe- 
ses. Consequently, there are two other significant efforts 
associated with this project. The first is a target detec- 
tion effort being led by the University of Massachusetts. 
The second is a hypothesis generation effort being led by 
Alliant Techsystems. 

Recently we have also begun looking at ways to add 
terrain model constraints into the recognition process. A 
first step has been taken by adapting existing matching 
capabilities to a restricted but quite important problem. 
To date, precise determination of the pointing angle of 
the Unmanned Ground Vehicle (UGV) relative to the 
terrain map has been determined by hand. At the end 
of this report there is a brief overview of some recent 
experiments suggesting a practical way of automating 
this process. 

2    Alignment and ATR 

While adapting the alignment paradigm to ATR might 
at first seem to be a simple transfer from on applica- 
tion domain to another, it is not. By their nature, ATR 
problems are more difficult than those typically solved 
using alignment algorithms. In ATR, image resolution 
is typically low. Targets viewed in color imagery are 
textured, in FLIR appearance is highly variable, and in 
range imagery geometric form is often complex. CAD 
models of targets are typically available, but often con- 
tain excessive detail. Terrain features introduce clutter 
and targets are often partially occluded. These factors, 
plus the fundamental ambiguities associated with per- 
spective mapping of small objects into optical imagery, 
make direct application of current alignment algorithms 
infeasible. 

To counter some of these difficulties, optical imagery 
may be supplemented with range imagery.   Direct 3D 



'data resolves many ambiguities inherent in optical im- 
agery. However, the introduction of a second sensor 
complicates the problem by introducing the need to fuse 
data from heterogeneous sensors. Fusion might be ac- 
complished by processing range and optical imagery sep- 
arately and combining evidence after the fact. However, 
doing so throws away the possibility of coupling evidence 
through the known 3D sensor and target geometry. 

To exploit constraints derived from scene and target 
geometry, we are developing new algorithms which geo- 
metrically align 3D target models with both range and 
optical image data. This alignment is performed so as 
to maintain global geometric constraints associated with 
known sensor and scene geometry. Some geometric con- 
straints are precisely calibrated while others are not com- 
pletely specified. For example, the 3D position and ori- 
entation of the target relative to the sensors obviously 
varies. Also, as long as separately mounted range and 
optical sensors are used, exact pixel registration between 
images can be expected to vary. Thus, estimates of 3D 
object pose as well as image registration should be re- 
fined as part of the alignment process. As a shorthand, 
we have coined the term coregistration to describe this 
process of simultaneously refining these estimates based 
upon corresponding target and sensor features. 

3    Components 

To develop a complete end-to-end Target Recognition 
capability, recognition is divided into the three stages 
outlined below: 

Color Target Detection Given color imagery, or im- 
agery from any multi-band sensor, determine re- 
gions of interest (ROIs) where targets might be 
present. While initiating ATR with a detection 
phase is standard, two things are novel about the 
approach taken here. First, new machine learning- 
technology for building multi-variate decision trees 
is being adapted to the problem of target detection. 
Second, color imagery is being utilized. Results to 
date often show camouflaged vehicles can be distin- 
guished from natural backgrounds even when each 
is in a gross sense the same color: green camou- 
flage against green grass and brush. Color detection 
is relatively mature and has been integrated and 
demonstrated running on the Unmanned Ground 
Vehicle. The color detection effort is led by the 
University of Massachusetts. The general approach 
to target detection as laid out in [BDHR94] is based 
upon more general work on the use of learned multi- 
variate decision trees in computer vision [DBU94]. 

Hypothesis Generation Given regions of interest 
generated by the color detection process, or any 
other detection algorithm, this second stage hy- 
pothesizes what type or types of vehicles may be 
present and at what positions and orientations rel- 
ative to the sensors.   To provide this capability, a 

LADAR boundary template probing algorithm is 
being utilized which is itself an accomplished ATR 
algorithm [B.TLP92]. This algorithm does the best 
it can to reduce the possibilities and then its top 
hypotheses are passed onto the final coregistration 
verification stage. Adding this third stage takes the 
pressure of making the final decision regarding tar- 
get type off the boundary probing algorithm and 
means the algorithm operates under different perfor- 
mance constraints: it needs to generate a hypothesis 
which is approximately correct, but need not rank 
the top alternatives perfectly. Alliant Techsystems 
is leading the work on this algorithm. 

Coregistration Target Verification This is the most 
intricate, computationally demanding, and novel as- 
pect of our system. It takes as input the target ID 
and pose hypotheses generated by the previous step, 
and refines each based upon coregistration of the 
target model, optical imagery, and range imagery. 
The output is an exact match between sensor fea- 
tures and 3D target features and a quality of match 
measure based upon the associated 3D alignment of 
features. First instantiations of all the subcompo- 
nents needed to perform coregistration verification 
have been developed and integrated into a single 
testbed. Each of these subcomponents represents a 
separate research project is described further below. 

To accomplish target verification through coregistra- 
tion, a set of component technologies have been devel- 
oped. These are summarized below: 

Target Model Feature Prediction CAD models of 
targets do not explicitly represent the types of in- 
formation required to do matching in optical and 
range imagery. An on-line algorithm for generating 
sampled-surfaces for matching to range data and 3D 
silhouette features suitable for matching to optical 
imagery has been developed. 

Model-Driven Image Feature Extraction In opti- 
cal imagery, bottom-up feature extraction is prob- 
lematic at best. Consequently, a model-driven edge 
detection and line extraction process has been im- 
plemented which seeks locally optimal silhouette 
features in the optical imagery. 

Range, Optical and Target Coregistration 
Extending past work on 3D pose determina- 
tion [KH94], a new least-squares algorithm has 
been developed which determines the 3D pose 
of the target relative to a range and an optical 
sensor and simultaneously adjusts the registration 
mapping between the sensor image planes [SB94], 
A recent extension of this work to perform median 
filtering has dramatically improved the quality of 
the results [Ant96b, Ant96a]. 



Coregistration Space Matching A match quality 
measure has been formalized to evaluate alternative 
coregistration estimates based upon fidelity of the 
target model to the sensor data. A local search oper- 
ator in the space of coregistration mappings is then 
used to find better matches between target models 
and sensor features. This work is further described 
below, in [BSS96] and elsewhere in these proceed- 
ings [Mar96a]. 

Each of the components outlined above is a focus of 
research and the progress in each area is summarized in 
the following sections. 

4    Progress on Key Components 

4.1     Color Detection 

The essential elements of this work along with results on 
data collected by ourselves and Martin Marietta at Fort 
Carson [BPY94a] were reported in the previous Image 
Understanding Workshop Proceedings [BDHR94]. Since 
this initial description of the color detection work, the 
following has been accomplished: 

1. An improved way of coalescing individual pixel de- 
tections into ROIs has been implemented. 

2. The algorithm has been successfully integrated with 
the other Reconnaissance, Surveillance and Target 
Acquisition software running on the UGV and has 
been demonstrated to run reliably in the field. 

3. The algorithm is being formally evaluated in an in- 
dependent effort being led by Ted Yachik of LGA. 

4.1.1     Operating Scenario 
It is best to start by reviewing the basic operating sce- 

nario for the color detection system. First, it is assumed 
that training imagery is obtained prior to a fielded mis- 
sion, and based upon this training data the system learns 
to discriminate between color values produced by camou- 
flaged vehicles and values produced by background ter- 
rain. The result of this training is a. color lookup ta- 
ble (LUT) indicating, for each possible RGB color pixel 
value, whether it is more likely to be produced by a tar- 
get or background. 

In fielded operation, the system performs real-time 
color lookup on all pixels coming in and. classifies them as 
target or background. Then, an ROI extraction process 
sums responses over fixed sized windows in the image 
and extracts ROIs: one ROI for each local maximum in 
this summed response image which is over a minimum 
threshold. When integrated with the RSTA package on 
the UGV, the results of the color detection were com- 
bined with those of a traditional FUR detection algo- 
rithm. 

IR and color detection complement each other, since 
false positives do not tend to correlate. For IR, false 
positives are typically produced by objects such as rocks, 

Min Max Median Mean S.D. 

3 41 13 15 9.5    | 

Table 1: Detection Statistics on 51 Demo C Test Images. 
No true target was missed in this test. 

which heat up in the sun, or reflect solar energy back into 
the IR sensor 1. For color, typically cool objects such a 
shrubs and trees tend to generate false positives. 

Perhaps the most important factor in evaluating the 
usefulness of color detection concerns the degree to which 
training generalizes to variations in field conditions. The 
current system, using a single LUT, has been demon- 
strated to generalize across times of day, lighting condi- 
tions, weather and vehicles. Results demonstrating this 
on color imagery obtained from 35mm film have been 
previously reported [BDHR94, BHP95], and more recent 
results obtained using the color CCD sensor on the UGV 
are summarized below. 

The current system does not generalize across sensors, 
but instead is trained to the specific response of a par- 
ticular sensor. This is primarily a matter of experience, 
since generalization between sensors requires effort be 
devoted to the problem of cross-sensor color calibration. 
In principle such calibration can be done, but there are a 
variety of subtle issues involved which make this its own 
topic for future research. 

4.1.2     Experience Running on SSV-B 

One way to illustrate our confidence in the potential 
of the color detection system is to simply recount our 
first experiences with the system running as part of the 
UGV RSTA package. After a significant software inte- 
gration, the system was finally integrated and debugged 
by mid June, 1995. On Tuesday, June 13, 18 training im- 
ages were collected using SSV-B. On Wednesday morn- 
ing, June 14, an hour was taken to select 14 image chips: 
3 indicating typical background colors and 11 showing 
vehicles. A color LUT was built, loaded on the vehicle, 
and the system was tested from 1 to 5 PM on 51 new 
images. These 51 images included targets not in the 
training data: both with brown and green camouflage 
and viewed from vantage points different from those in 
the training data. 

The key result was that over the 4 hour period, under 
both cloudy and sunny conditions, viewing 4 different 
targets from 2 different vantage points, the system never 
missed a target. This first field result was positive be- 
yond our expectations. While perfect performance such 
as this is not a realistic expectation in general, it is sug- 
gestive of the strength of the system. Tight timing con- 
straints associated with scheduling of SSV-B leading up 
to Demo C prevented further field testing. 

Because the system was tuned to work with FLIR, 

1The RSTA FLIR operates in the 3 to 5 micron band and 
is sensitive to reflected thermal energy. 



Figure 1: Color Detection Example in UGV Data from Demo C Test Site,  a) Image with ROI boxes overlaid, b) 
Summed detection values from which ROIs are derived. 

a high false positive rate was considered acceptable as 
a way of reducing the change of missed targets. Ta- 
ble 1 provides statistics summarizing the detection per- 
formance over the 51 test images. The columns present 
the minimum number of detections on a single image, 
maximum number of detections on a single image, the 
median number across the image set, the average num- 
ber, and the standard deviation. 

To illustrate how these detection ROIs appear, the 
ROIs found for a typical image from the June tests at 
the Demo C site are shown in Figure la 2. The summed 
response producing these ROIs are shown in Figure lb. 
Because each ROI is relatively small, even for those im- 
ages with high numbers of detections, the color detection 
algorithm is focusing attention on a very small percent- 
age of the total image. 

4.2     Hypothesis Generation 

The LAD AR boundary probing system developed by 
Alliant Techsystems has been modified to run as a stand 
alone system on a Sparc workstation. James Steinborn 
at Colorado State, and Kris Siejko at Alliant Techsys- 
tems, have been working to make the system operational 
in this stand-alone mode running under Solaris. They 
have also been making enhancements, including a new 
visualization tool developed by Jim Steinborn which en- 
ables us to better understand the geometric structure of 
the probe templates. 

Preliminary tests of system have been performed on 
LAD AR images from the Fort Carson data set [BPY94b]. 
Templates for the Ml 13 and M60 generated at 52 meters 
were selected for all the tests. Templates generated at 
closer and farther ranges were tried as well, but the re- 
sults changed little. The probing algorithm does its own 
internal template scaling based upon the LADAR data 

2Many of the figures in this paper look much better 
in color and can be accessed through the CSU homepage: 
http: ://wuw. cs . colostate.edu/~vision/ 

itself. There were a total of 72 templates: 36 of each 
vehicle sampled at 10 degree aspect increments. 

The results for this test are summarized in Table 2 3. 
The hypothesis generation algorithm produces a set of 
ranked hypotheses. The top five are indicated as pairs: 
(vehicle)/(aspect angle). The best hypothesis, in terms 
of the true type and aspect of the vehicle, are indicated 
in boldface in Table 2. 

The correct hypotheses are not the highest ranked hy- 
potheses based upon the boundary probe result alone. 
However, a hypothesis for the correct target within 10 
degrees of the true aspect angle does appear in the top 
five for all 4 images. While the performance of the 
boundary probing could no doubt be improved through 
more careful tuning to the Fort Carson data, this ex- 
periment demonstrates the system is capable of focusing 
attention upon a small set of aspect and target hypothe- 
ses. 

4.3     Model Feature Prediction 

Highly detailed Constructive Solid Geometry (CSG) 
models of target vehicles are available in BRL-CAD for- 
mat [U. 91]. These detailed models are a tremendous as- 
set. However, much work is required to transform these 
CSG models into features appropriate for matching to 
sensor data. Over the past year, Mark Stevens has de- 
veloped a semi-automated system for transforming the 
CSG to a polygonal representation [SBG95, Ste95]. He 
has also developed a fully automated system for extract- 
ing edge and surface information from these polygonal 
models. This later system is summarized here and more 
fully described elsewhere in these proceedings [Mar96a]. 

For optical imagery, 3D face boundaries likely to gen- 
erate observable edges in imagery are extracted from the 
3D target models. This is done on-line given an estimate 
of the target pose and lighting. Target pose is produced 

3The LADAR and optical imagery for image 4 appears in 
Figure 3. 



No. File Annotation Hypl Hyp 2 Hyp 3 Hyp 4 Hyp 5' 
1 nov21115Ll Clear Angle On M113/10 M113/40 M113/120 M113/30 M113/50 
2 nov40755Ll Nose Down Profile M113/120 M113/110 M113/60 M113/50 M113/70 
3 nov31055Ll Clear Profile M113/120 M113/60 M113/50 M113/70 M113/80 
4 nov31170Ll Head On Nose Down M113/30 Ml 13/20 M113/40 M60/0 M113/10 

Table 2: Hypothesis Generation Results for 4 Fort Carson Images. The target in all cases is an M113. The top 
five hypotheses are shown in ranked as (vehicle)/(aspect angle). The hypothesis indicated in boldface is within 10 
degrees of the true aspect angle. 

by the hypothesis generation phase described above and 
is refined as part of matching as discussed below in Sec- 
tion 4.6. Lighting information for outdoor scenes may 
be derived from co-lateral information regarding time- 
of-day, time-of-year, place and weather. 

For range imagery, sampled surfaces are extracted 
from the 3D model using a process which simulates the 
operation of the actual range sensor. The target model 
is transformed into the range sensor's coordinate system 
using the initial estimate of the target's pose and rays 
are cast into the scene and intersected with the 3D faces 
of the target model. Sampling geometry is selected to 
reflect the characteristics of the actual range device. 

4.3.1     Silhouettes and Internal Structure 

To match 3D rather than 2D image space, features 
must be 3D and not flattened 2D templates. Therefore, 
the model feature prediction system determines those 3D 
features within the target model responsible for generat- 
ing the target silhouette for a given pose estimate. These 
3D features naturally accommodate modest changes in 
viewing angle. If the expected pose estimate changes 
significantly, new features may be generated. The first 
version of the feature prediction system extracts only 
features associated with the silhouette. More recent 
work, described in more detail elsewhere in these pro- 
ceedings [Mar96a], extends this method to add signifi- 
cant internal structure as well. 

The silhouette prediction algorithm begins by assign- 
ing a unique color to each face in the target model. This 
color acts as an index into a hash table of 3D faces. The 
model is then rendered from the hypothesized viewing 
angle using orthographic projection and a hardware Z- 
buffer. A target model with 250 faces can foe rendered 
in 1.2 seconds on a Sparc 10 with a ZX hardware accel- 
erator. 

Pixels adjacent to the unique background, color indi- 
cate faces contributing to the target silhouette. These 
faces are in turn checked to determine which face bound- 
aries (edges) contribute to the silhouette. These edges 
are then clipped to retain only those segments lying on 
the silhouette. Since rendering is orthographic, para- 
metric values for clipping measured in the image space 
may be applied directly to the corresponding 3D edges. 
The final result is a list of 3D edges representing the 
silhouette of the target model for a given viewing angle. 

4.4    Model-Driven Image Feature Extraction 

Bottom-up line extraction, such as performed by the 
Burns algorithm [BHR86], is unreliable in imagery such 
as that shown in Figure 2b. To overcome the difficulty in- 
herent in this imagery, a more model-driven approach is 
required. To accomplish this, we combine two ideas from 
the literature: model-driven edge detection [FL87, FL88] 
and directionally tuned gradient filters [Can86]. The 
quality of a straight line segment denoting an extended 
edge is defined to be a function of the gradient magnitude 
under that edge. A gradient mask tuned to the specific 
expected orientation of the segment is used. The place- 
ment of the segment is perturbed until a locally optimal 
placement is found. 

4.4.1     Placing Silhouette Edges 

Initially, 3D silhouette edges are projected into the 
color image based upon the known intrinsic sensor pa- 
rameters and the estimated pose of the target. Figure 2b 
shows the projection of a 3D silhouette onto the image 
plane using the sensor calibration parameters [BHP94]. 
The pose estimate comes from the hypothesis generation 
stage. 

For each projected silhouette feature, a search is ini- 
tiated in the image for the locally best corresponding 
line segment. A gradient mask tuned to the the par- 
ticular expected orientation of each silhouette edge is 
created by rotating the first derivative of a Gaussian. 
There are many precedents for tuned edge masks includ- 
ing Canny [Can86] and Torres [TP86] and their use for 
bottom-up edge detection [Shu94, FA91]. An example 
of such a filter, displayed as an image, is shown in Fig- 
ure 2a. 

The placement of the silhouette edge is locally per- 
turbed so as to maximize a function of the underlying 
tuned gradient response. To do this with subpixel accu- 
racy, a commonly used graphics anti-aliasing technique 
known as Pineda Arithmetic [Pin88] is used to weight 
the contribution of individual pixels. A weighting value 
for each pixel is created (see Figure 2d) and the response 
for the silhouette line is the weighted sum of responses 
at each pixel. Additional details on this work appear 
elsewhere in these proceedings [Mar96b]. 



a. Mask b. Silhouette Line     c. Gradient Response d. Weight 

Figure 2: Gradient Mask and Response 

4.5     Range, Optical and Target Coregistration 

Anthony Schwickerath has developed a new least- 
median-squares algorithm for determining the best 
coregistration estimate based upon a set of correspond- 
ing sensor and target features. The motivation for this 
work and full mathematical development has been pre- 
sented previously [SB94, BHP95]. Recently, median fil- 
tering has been included in the algorithm. In addition, a 
match error for ranking alternative correspondence map- 
pings [Ant96b] has been developed. 

The complete system has now been demonstrated on 
optical and range imagery collected at Fort Carson us- 
ing high quality range and optical target model features 
generated using the system described above. Results 
of these improvements are reported in more detail else- 
where in these proceedings [Ant96a]. Here, allow us to 
summarize briefly what coregistration does, and show 
one result using the new median filtering capability. 

4.5.1     Review and Median Filtering Example 

Coregistration addresses a fundamental problem aris- 
ing when optical and range imagery is collected from sep- 
arate co-located sensors. Off-line calibration can largely 
determine the sensor-to-sensor registration, but some 
small variations may be expected during field operations. 
Thus, multi-sensor pose determination must include de- 
grees of freedom to express movement of the target rela- 
tive to the sensors, as well as degrees of freedom to per- 
mit fine adjustments to the image-to-image registration 
between the sensors. 

Our specific formulation of this problem introduces a 
coplanarity constraint which limits the freedom of move- 
ment of the range sensor relative to the optical sensor. 
Thus the range reference coordinate system may trans- 
late in the common x-y image plane of the two sensors, 
but otherwise the two sensors move together. Thus, six 
degrees of freedom express the position and orientation 
of the target relative to the sensor suite and two degrees 
of freedom permit translation of the optical image plane 
with respect to the range image plane. 

This choice of parameterization may at first seem odd. 
Given two sensors on a common platform, it is their rel- 
ative pointing angles, not their relative spacing, which 
is most likely to vary. However, the pixel-to-pixel move- 
ment between the two image planes is virtually indistin- 

guishable in the two cases when rotations are small. The 
advantage of this translation formulation is that it does 
not introduce a second rotation term into the coregistra- 
tion formulation, which would in turn add unnecessary 

nonlinearities. 
Figure 3 4 shows a result of the median filtering coreg- 

istration algorithm on a pair of range and optical images 
containing an Ml 13. This is the same data for which 
results of the hypothesis generation algorithm were re- 
ported in Table 2: image NOV31170L1 5. The top im- 
age shows silhouette model features overlaid on the op- 
tical image. The body of the figure shows the coregis- 
tered range features from nine different vantage points 
in order to provide alternative views of the 3D structure. 
The filled rectangles are features included in the least- 
median-squares match: light representing image points 
and dark representing model points. The outlined rect- 
angles are features excluded from the match. The coreg- 
istration estimate shown in Figure 3 has correctly skewed 
the target aspect slightly to the left, even though the ini- 
tial estimate was exactly head-on. 

4.5.2     Correspondence Space Matching 

The space of possibly corresponding target and sen- 
sor features is inherently combinatoric and the abso- 
lute number of possible correspondences is highly de- 
pendent upon the accuracy of the initial coregistration 
estimate. To determine candidate features, range and 
optical model feature are projected into the imagery and 
all image features within some local area are marked as 
potential matches. The size of these areas grows with 
uncertainty in the coregistration estimate. For median 
filtering to be effective, the initial estimate must be accu- 
rate enough to ensure that over 50% of all paired features 
are part of the true match. 

In principle, search in this combinatorial space of cor- 
respondence mappings could be conducted using local 
search in a manner analogous to that set for in Bev- 
eridge's dissertation [Bev93]. However, as a practical 
matter, the fine grained sampling of range points causes 
the combinatorics to explode. While such a local search 

4 This figure is being improved so grey tones work out 
properly 

5The unusual angle of the vehicle makes this an interesting 
and challenging problem. 
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Figure 3: Coregistration median filtering results for ml 13 in a pair LAD AR and Color Images. The top image shows 
silhouette features in color image using the coregistration estimate. The bottom nine views show 3D registration of 
target and range features displayed from different viewpoints. 

procedure has been implemented, it's usefulness is cur- 
rently limited, and will only become practical if some 
form of initial grouping is applied to the range features. 
This is trivial in the case of the target models, where 

bounded faces are already represented. For the range 
data, we are experimenting with a scan-line range seg- 
mentation technique [X. 94]. 
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Figure 4: Coregistration-space Local Search Results for Shot 20 Array 5 (M113 APC) 

4.6     Coregistration Space Matching 

As an alternative to search in the space of correspon- 
dence mappings between target model and sensor fea- 
tures, this section introduces a local search algorithm 
which operates in the space of coregistration estimates. 
While increasing the number of potentially matching fea- 
tures increases the size of the correspondence space expo- 
nentially, the dimensionality of the coregistration space 
is fixed: K8 for the case treated here. This work is be- 
ing pursued as an extension of Mark Stevens's work on 
model prediction and model-driven feature extraction. 
A more detailed account of this work appears elsewhere 
in these proceedings [Mar96a]. What is presented here 
is an overview with an example. 

Early experiments with search in coregistration-space 
suggests an ability to correct quite large errors in the 
initial coregistration parameters. While this approach is 
still very early in its development and has been applied to 
only four pairs of range and optical imagery, this initial 
experience is quite encouraging. 

If any failing has been observed so far, it is a weak- 
ness in generating the final highly precise match. In 
other word, search leads to a much better but not per- 
fect coregistration estimate. This suggests the two ap- 
proaches complement each other, the first getting to a 
near correct estimate followed by median filtering pro- 
ducing a highly accurate final result. These two al- 
gorithm are implemented within the same testbed and 
combined testing will begin shortly. 

The search algorithm locally minimizes an error func- 

tion which measures the relationship between the model 
and data features. This measurement takes into account 
both range and optical features, but treats the two cases 
somewhat differently. For the optical features, the error 
is a function of the gradient measurement used in the 
model-driven edge detection described in Section 4.4. 
For range, the error measure is a function of the Eu- 
clidean distance from points on the target model sam- 
pled surface to their nearest neighbor in the range image 
data. 

The local search itself samples each of the 8 dimen- 
sions of the coregistration-space about the current esti- 
mate. Clearly, the step-size used in this sampling is im- 
portant. The general strategy implemented moves from 
coarse to fine sampling as the algorithm converges upon a 
locally optimal estimate. The initial scaling of the sam- 
pling interval is determined automatically based upon 
moment analysis applied to the initial target-model and 
sensor data sets. The search continually takes the best 
along each dimension until it reaches an optima. When 
no further progress is possible along any dimension, the 
resulting 8 values are returned as the locally optimal 
coregistration estimate. 

Figure 4 shows a sample result of the coregistration- 
space search applied to an image containing the mll3. 
The left column shows the initial coregistration estimate, 
both target pose and sensor registration, provided by 
the hypothesis generation algorithm. The right column 
shows the result of the local search algorithm. Figures 4a 
and 4d show how the process has corrected the orienta- 



tion of the target. 
Figures 4b and e show both the silhouette and internal 

features. Observe how closely the features in Figures 4e 
correspond to the color image. Also note that change in 
appearance reflects the 3D rotation of the target model: 
the change between Figures 4b and 4 e in a could not be 
produced by a 2D affine transformation of a 2D template. 

Figures 4c and 4f show the movement of the target 
model sampled points relative to the actual range data. 
It is this range data which is providing much of the con- 
straint used to correct the orientation of the target. The 
dark grey rectangles are model points, the lighter grey 
rectangles are range image points. Because the search 
aligns the two, it is difficult to distinguish model from 
data in Figure 4f, while they are easily distinguished in 
the initial configuration: Figures 4c. 

5    Horizon Line Orientation Correction 

There are both immediate and longer range benefits to 
be realized if terrain-based constraints are integrated 
into the ATR process. One of the most immediate needs 
is strikingly evident in the RSTA function of the UGV 
program. The current SSVs developed by Martin Ma- 
rietta use GPS to determine position and inertial nav- 
igation to determine orientation. All but the most ex- 
pensive inertial systems only measure true orientation 
to within, speaking loosely, 1 degree. For some purposes 
this is a modest error, but when attempting to register 
imagery from a 4 degree field of view sensor with stored 
terrain maps, such an error introduces a 128 pixel error 
in a 512x512 image. 

Consequently, a normal part of current SSV opera- 
tion is something called HOC (Horizon Line Orientation 
Correction) or LOC (Landmark Orientation Correction). 
This is a by-hand procedure in which known points on 
the horizon or surveyed points on the terrain map are 
fed to the RSTA system in order that it can recover, to 
within several pixels, the true relationship between the 
stored terrain map and the live video imagery. Clearly, 
this is done once the vehicle is stopped at an observa- 
tion point, and must be repeated each time the vehicle 
is moved. 

While the need for such precise registration may at 
first not be obvious, it is a pre-condition for the use of 
most FLIR target detection algorithms. This is because 
these algorithms require an initial range-to-target esti- 
mate for every pixel in the FLIR image. In the absence 
of an active ranging sensor, these estimates can be de- 
rived from terrain maps, but only if precise registration 
is established. 

Recently, Christopher Graves and Christopher Lesher 
have begun work on automating the terrain-to-imagery 
registration task. A proof-of-concept horizon line match- 
ing experiment has been conducted using imagery col- 
lected by Lockheed-Martin at the UGV Demo C test site. 
The geometric matching system originally developed as 
part of Beveridge's thesis work is being used [Bev93] in 

this test and results are presented elsewhere in these pro- 
ceedings [J. 96]. The results prove the feasibility of using 
local search matching as a tool to automate the orienta- 
tion correction process in domains where horizon struc- 
ture is distinctive. 
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